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Summary—Some linearized solutions for generalized aerodynamic forces on

oscillating three-dimensional wings in transonic flow are presented. Linearized

theory is valid whenever the reduced frequency of oscillation is not too low.

For the rectangular wing the solution is given as an infinite series in which the

solution for the wing of infinite span constitutes the initial term. This series is

shown to be convergent for all non-zero aspect ratios and converges very rapidly

even for comparatively low aspect ratios. Three terms are found to be sufficient

in most practical cases. The numerical calculations have been programmed on

a high-speed electronic computer and some results for a wing–aileron combination

are given. The results show that three-dimensional effects are very important and,

in particular, increase the damping of the rotational degree of freedom of the

aileron.

Solutions for other planforms are also considered briefly. For triangular wings
a special transformation is given which relates the solution to that for a rectangular

wing.

1. INTRODUCTION

THEORYand experiments indicate that the danger of an airplane or missile
encountering flutter or other instabilities of aerodynamic origin usually is
greatest at transonic speeds. That strong unsteady-flow effects should
exist in this speed range can readily be explained when remembering that
in a transonic flow disturbances travel forward at about the same speed as
the object causing them. Thus even a slow unsteady motion may set up
large phase differences between different parts of the flow field and
unstabilizing phase relations between motion and aerodynamic force may
therefore easily be created.

The efforts to make accurate flutter predictions are seriously hampered
by the present scarcity of adequate tables for aerodynamic forces oh
oscillating three-dimensional wings. For high supersonic Mach numbers
or for large-aspect-ratio wings in subsonic flow the use of the strip (two-
dimensional) theory may be justified. At transonic speeds, however,
cross-flow effects are always very large (cf. the transonic area rule) so that
the strip theory would lead to large errors in the computed flutter speed.

In the present paper the solution is given for rectangular wings of
arbitrary aspect ratio and a transformation is also presented which relates
the solution for a delta wing to that of a rectangular wing. The theory is
based on the linearized equations of motion which are applicable also for
transonic flow, provided the reduced frequency is not too low.
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2. SYMBOLS

aspect ratio of wing or control surface

reference chord

C(x) — iS(s)
e-iu
   du, Fresnel integrals

A/27.ru
0

pressure coefficient

flx, Y) mode shape function

ho(x, Y) solving kernel given by Eq. (A8)

wb
reduced frequency

K--,(2ks-hk')1

ij - IL e''‘i  generalized aerodynamic force coefficients defined
by Eq. (27)

lj  sectional aerodynamic force coefficients defined by
Eq. (29)

free-stream Mach number

M1,  local Mach number

dynamic pressure

r, 0, p
polar co-ordinate systems defined in Fig. 3

V,Ti

Fourier transform variable

reference area (wing or control surface area)

time

free-stream velocity

w(x, y) normal velocity of wing

( Y) Fourier transform of w(x, y)

y, z Cartesian co-ordinate system given in Fig. 1

X, Y, Z  transformed co-ordinate system defined by Eq. (47)

8 non-dimensional amplitude of oscillation

thickness ratio

semi-span-to-chord ratio

Fourier transform of 9)

Re { (pei't},  dimensionless perturbation velocity

potential, (T) (p(n)
o
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side-edge correction potential to the nth order for
the right and left hand side edge, respectively

Fourier transforms of  On), tri(n)

dummy variables

transformed potential function for the delta wing,
Eq. (48)

angular frequency of oscillation

b= 1

FIG. 1. Co-ordinate system.


3. LINEARIZATION OF THE EQUATIONS OF MOTION

Typical of transonic flow is the non-linear accumulation of flow dis-
turbances moving very slowly with respect to the body causing them.
This will in general prohibit the use of linear theory for steady flow. If
the flow oscillates rapidly, however, the disturbances will not have time to
accumulate and linear theory will be applicable with similar accuracy as in
sub- or supersonic flow. Quantitative conditions for linearization to be
possible in two-dimensional flow were first given by Lin, Reissner, and
Tsien(') and their analysis has later been extended to three-dimensional
flow(2, 3, 4). The results show that linearization is possible provided the
reduced frequency of oscillation k (wb) U is so high that the following
requirement is fulfilled everywhere in the flow

k I  LI (1)

1 7
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where M L is the local Mach number. In two-dimensional flow 1 —M L
= O(€ ) (e = thickness-to-chord ratio) and for low-aspect-ratio wings
1 — = 0 (€ a ln a E ) (a = semispan-to-chord ratio) so that lineariza-
tion should work down to lower reduced frequences in the low-aspect-ratio
than in the two-dimensional case.

The condition (1) will make the wave lengths of the disturbances
moving slowly with respect to the body so small that neighbouring waves
will have time to interact and damp out before having travelled but a small
distance compared to the characteristic length of the body. The proper
linearized differential equation for the perturbation velocity potential

Re[pe"] in non-dimensional form then reads(4)

(pyy Crzz 2ikM2Tx k2M2cp = 0 (2)

The non-dimensional co-ordinates are chosen so that b = U = 1. This
then requires the frequency of oscillation, co, to be equal to the reduced
frequency k.

4. GENERAL SOLUTION FOR A RECTANGULAR WING

The Mach number can be eliminated very simply from Eq. (2) by the
transformation 9 = My; = Mz, so we may in the following set M = 1.

Let the amplitude distribution of the rigidly or flexibly oscillating wing
be given by z = 8f(x,y) where 8 is the non-dimensional amplitude and
f(x,y) is the mode shape function. Then the boundary condition on the
wing reads

99z(x,y,0) w(x,y) = 8(fx ikf) (3)
for() s X 1;

clyy+I'zz

	

4).0 W
-a* a-

FIG. 2. Boundary value problem after Fourier transformation.

Outside the wing the pressure difference across z 0 should be zero.
Hence

“x,y,0) O for I Y I % (4)

Together with the condition of non-reflection at infinity (Sommerfeld) and

that c[ should vanish upstream of the wing, this formulates our boundary
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value problem. For its solution we will employ Fourier transforms.
Transformed variables will be denoted by capital letters so that, for
example,

( I) — 	 1 fTe-i5xdx = -97M (5)

The boundary value problem then takes the following form (see Fig. 2)

-F  (1)zz+K2 (I) =  0 (6)

(1),(y,0)= W for jy a (7)

01)(y,0) 0 for Iyj a (8)

where

K = (2ks k2)1 (9)

We will select that branch of  K  for which Im(K) < 0 and a suitable cut is
therefore introduced in the complex s-plane.

Eqs. (6)-(8) plus the condition that 411 should vanish at infinity define the
classical problem of two-dimensional diffraction around a finite strip. For
its solution two different methods are available in the literature. In the
first one elliptical co-ordinates are introduced. Then the problem can be
solved by separation of variables in terms of Mathieu functions. This
method was used by Miles(7) when treating the oscillating low-aspect-ratio
rectangular wing in supersonic flow. Due to the complexity of the
Mathieu functions, however, this method is not suited for the present
problem since the inversion of the Fourier transforms will lead to excessive
difficulties.

The second method, which will be used here, is the one originally given
by Schwarzschild ( ). In this a first order solution is obtained by dis-
regarding the boundary condition, Eq. (8), that the potential should be
zero on the y-axis outside the wing strip. Then a solution is added which

 cancels the first order solution on the y-axis for y

a but leaves the
normal derivative unchanged for y < a. This is repeated for the other
edge and the process is continued until the desired accuracy is attained
(sec Fig. 4). This method was used by Gunn (9) to calculate the lifting
pressures on a low-aspect-ratio rectangular wing at incidence in supersonic
flow.

The solution for z 0 of the first order problem, (DM, is easily found by
standard methods to be

(I)(0) = - f 110(2)(KR) W(t)) (In
2

(10)
_

where

R =z \
(

y 71)2 z2
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Here IF(y) should be suitably continued for ly > u. If IF is inde-
pendent of v it is convenient to let it remain constant to y I = ct. Then

the integration in Eq. (10) may be carried out with the result that

Kz(0)
=

(11)

Upon inversion tins leads to the ordinary strip theory solution, as given
e.g. in Ref. 10.

Setting If "(y) 0 for y o- leads to the Kirchhoff approximation which
will be discussed in Section 6.

At this stage it is convenient to introduce two sets of polar co-ordinates
r, 0 and f, O  with origins at the right and left edges, respectively (see
Fig. 3). On the wing 0 0 77". The distances from a point on the
y-axis outside the wing strip to the nearest edge arc denoted by p and
respectively (these are used as integration variables).

(y, z)

	

13 2cr. A
FIG. 3. Auxiliary co-ordinate system.

We will now seek a solution 1r(1)(r,O) to the wave equation (6) with
T (') . (1)(0)(y) (1)(°)(u  -  on the y-axis for v o- and with

Tz(') • • - 't)(I) 0 for y • 0-. The solution on the wing strip, i.e.
for 0 7, to this boundary value problem was found by Schwarz-




schild (5) to be

iKir •
(.1)(")(p(7) dp(12)

The corresponding solution 'Po) that cancels (Dm(y) on the negative
y-axis for y — u reads

i K(r • 7)
_ (1)(())( — - /5) di5 (13)

P f P
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Hence a second order solution (I) (1)(0) (1)(1)is obtained, where

(D(') T(1) (14)

	

However, (I) will still not be zero for y u since T (1) does not vanish

for r > A,  except if  KA ->co,  and vice versa for 17.(i ) • Therefore a

solution V') = 1F(2) + kr(2) is added, where

T(a)1
IT

I)

e- i K(r
T (1)(p + A) dp (15)

P

and tP(') is given by an analogous formula.

/ (1)
/  -- r

-cr
•

.1111.
"" • I r .mM •

cp(0) 4. 4)(1)

MEP •M1 AND

-41(2)
-

(2)

cp(2).141(2)41.72)

FIG. 4. Principle of solution.

The process which is depicted schematically in Fig. 4 may be continued

ad infinitum.  Schwarzschild showed that, in the case of II' independent

(if Y,the infinite series thus obtained converges for all non-zero values of
KA.  This proof may be extended to cases where U (y) is not independent

of y and K a complex number. Thus the following general solution on the
wing is found
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where

(1)
0

( 1)(n) :_= 11.(n)(r)kr(n)(e)




ty(n)
if

r + p
_

(n-0 (p + A) dp

ki/ (n- (fi + A) dfi

n > 1 (18)

(19)

and (I)("), T(') and are given by Eqs. (10), (12) and (13), respectively.
The inversion to the physical plane is readily carried out by aid of the

Faltung theorem for Fourier integrals and the following inversion formulas,
valid for x > 0,

2- -iki, 1
37-- TfH (2) (Ka) 1 _ i 	 +x (20)

J
o

 A ,,! 7T X

0"--1.fe–iKa = e.' a'V 7? e1x 4-‘x] (21)
X3/2

(For x‹.-: 0 the inverse transforms are zero)

Thus the final result reads

(22)

7)(n) _ o(n)  tpn) (23)
where

-H 0)
kr

	  e (24)

0(x, n V 2k  f  de 


dp e
+   xr 


.k

27312.1 (X—
0

—
1/2/z

IT(71)(x, e) =— e 	27012.1

X 07")(e, A+ p) (25)

(i f 11)1– e x

x 0(n-1)(e,A + [5) (26)

For n = 1 zr) and (To)in Eqs. (25) and (26) are to be replaced by cp (°) .
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5. GENERALIZED AERODYNAMIC FORCES

The generalized aerodynamic forces are defined as follows

Li i= 4 + (qSe"Si) -1f f APiff  dx dy (27)

where APi(x, y) is the lifting pressure difference due to the mode f. In
linear approximation this is given by

ACp  =  4e"(99 x ik(P)z o (28)

For flutter purposes it is sometimes convenient to define sectional

coefficients 1j tij kio by setting

b,= f ay (29)

NNhere b( y) here denotes the local chord.
In particular we will consider rigid body translational and pitching

oscillations about x = 0 defined by

f, = 1  (30)

f2= (31)

Thus L„ represents total lift due to translation, L22moment due pitch
about x = 0, etc.

6. CALCULATION FOR A RECTANGULAR WING


OSCILLATING IN RIGID TRANSLATION AND PITCH

Although the formulas Eqs. (22)-(26) given in the physical plane may be
directly applied it is actually more convenient to carry out the calculation
in the transformed plane before inversion.

We will take the first order solution to be the strip theory one. Thus
from Eq. (11), for z = -H 0,

which upon inversion gives(n )

(o)  - —e

(D(°) _ iv

--

e

A/277k(x —

(32)

ze(e) de (33)
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For the calculation of T(i) we need the following integral

1
	 dp -- (1 +  i)[F(Kr) 2 I  9] ( 34)

P P
where

e-
   du C(x) — iS(x)  (35)

J 1/27ru

(This integral formula may be proved by differentiating the left-hand side
of Eq. (34) with respect to K.)

Thus

=

be written

.k
, r)  e-'Y'

1 i
 +(36)

')w(e)4(37)

'1.01(r) T (o(r)

The inversion to the physical plane may

z9(xb( f, r, )77 , 110(x - - t.

where 11„ is given in the Appendix. The numerical calculation of the aero-
dynamic coefficients associated with 9-,(0 ) and ow is described in Ref. 5.

Eq. (37) gives the side-edge effect calculated for each edge separately
as if the wing were semi-infinite(s). The two-term solution 9? (pn +TO)

would hence be expected to represent the true solution with good accuracy

when the span is large in terms of the wave length, i.e. when A Yk is large.
Therefore, in order to simplify the analysis, only such large values of

A 'k will be considered so that the main portion of the side-edge effect is
taken care of by 9 0 ) and the higher order terms only give small additional
corrections. Actually, as will be evident from the numerical results below,
this does not seriously limit the analysis from a practical point of view.

In calculating 'I .(2) the asymptotic value of T (1) for large values of  Ki  is
therefore substituted in Eq. (18). From Eqs. (36) and (35) we find that

i IL/el 16.

	

9•0)(
)

1.7. ,---  du (38)

	

\ - 


v'KJ \-/27ru K3/.2

Thus

e k(r I tOrliqp - I- A)

or, upon substituting in Eq. (18),

2p -I- A r Irm(20r -1- A) (39)p + A

1— -
11'N

r(2p -H A -H r) T(9(2p F A I--r

P(P - f- A) r -I- p
dp  (40)

J

F(x)
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Since s only enters in T(1) the inversion becomes simply as follows

(2)(x, r, .n.) =__ — —f r(2p ± A ± r) )(x , 2p r A)
dp (41)

P(9 + A) r + p

1
77"

This integral would have to be evaluated numerically. Any number of
differentiations and integrations of each side of Eq. (41) with respect to x
can be made without changing the kernel of the integral so that this
formula is valid for the associated aerodynamic coefficients as well.

By introducing Eqs. (33), (37) and (41) into the formulas of Section 5 the
aerodynamic coefficients may then be evaluated. The numerical calcula-
tions for the present paper were performed on the Swedish electronic
computer BESK. Results for an A = 2 wing are given in Figs. 5-7.
This is an aspect ratio typical for wings of practical interest and is so low
that it should give a serious test on the convergence of the series (22).

—In Fig. 5 sectional lift due to pitching about x = 0,
ie

i.e. /21 1/21 le ",
is shown for h = 0.3. It is seen that the contribution from the third

term is fairly small even at this low frequency. Hence the two-term

solution, for which the side-edge effect from each edge is calculated as if

t_fa um le en.0.•   • limon.mmtal

A-2
k - 0.3r

\.  

	

3   	
ONE TERM \

2 STRIP THEORY) \ _ 	
TWO TERMS It

1 -THREE TERMS




0.5 y 1.0

rt, 220°
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0.5 y 1 0
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FIG. 5. Spanwise distribution of lift due to pitch about x 0 on a rectangular

wing at M - 1. /2 1 1/211(1'1'21•

IL I 6

5

I.
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the wing were semi-infinite ( ) gives a fairly good approximation even at
rather low values of k and A. As noted earlier in Ref. 11, the strip theory,
on the contrary, is very poor, as would be expected.

6

A =2
..„01.00 ••"..

•
4

PRESENT THEORY (3 TERMS)
2 --- REF. [6)

--- STRIP THEORY
--- PISTON THEORY

0.5 1.0 k 1.5

220

21

180e

	

1.0 k 1.5

id
FIG. 6. Coefficient of total lift due to pitch for a rectangular wing at

M 1. L21 IL2d/°21.

In Fig. 6 the total coefficient of lift due to pitch, L21, is plotted as
function of k, and the present three-term solution compared with other
approximate theories. At the lower values of k very good agreement is
obtained with a recent theoryo) valid for low values of A \/k. Only below
k = 0.1 the present three-term solution starts to deviate considerably from
the low-frequency solution. As discussed in Section 3, however,
linearized theory ceases to be valid for very low values of k so that the
three-term solution probably covers with sufficient accuracy the whole
range of reduced frequencies for which linearization is possible.

For large values of k one would expect strip theory to become pro-
gressively more accurate. I lowever, even at the highest frequency shown
in Fig. 6  (k - 1.75) the agreement with the present theory is not par-
ticularly good. Actually, the piston theory(3) which is the high-frequency
limit of any theory for compressible flow, happens to give better results
over the whole frequency range for such a low-aspect ratio wing. In
particular it does not show the spurious 45 phase lag at k --=0 exhibited
by the strip theory.
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6
.—.—.—.—

IL211 5

4
  A- 2 \ 	

k • 2 ;

3

2 PRESENT THEORY
---KIRCHHOFF

1 ---STRIP THEORY

0.5 y 1.0

240

21220

200


180

„,•  •1•11.1,ii

• •MIMI. 1•• • •

0.5 y 1.0
FIG. 7. Comparison of different high-frequency theories for the spanwise


distribution of lift due to pitch on a rectangular wing at M- - 1.

To conclude this section a comparison is given between the Kirchhoff
approximation and the present solution. The idea behind this approxima-
tion is that for a wave length that is small compared to the span one could
neglect the flow spill-over around the edges and hence compute tr, from
Eq. (10) by setting  w(x, y) = 0 for ly I > o-. Therefore the fairly high
reduced frequency of  k = 2 is chosen in Fig. 7 where  121is plotted for the

2 wing. As would be expected the error of the Kirchhoff approxi-
mation is largest near the edges where it is about 50 of the strip-
theory value in vector magnitude and 30° in phase angle. Further
inboard it is somewhat better. However, it can be shown from the present
results that the side edge effect given by Kirchhoff's solution is only 2-1 of
the correct value (which is given by cr,(1 )) as  k  becomes large so that this
approximation is the correct limiting solution for  k --> oo  only in so far as
it then leads to the strip theory. Hence its value in thc present connexion
is doubtful, particularly since it is not simpler to evaluate than the present
two-term solution (which for  h 2 is indistinguishable from the true
solution).

7. CALCULATIONS FOR A CONTROL SURFACE

Since there is no upstream influence in linearized transonic flow the
theory given in Section 4 could be applied to the calculation of pressures
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due to the motion of an arbitrarily shaped control surface on any planform
with an unswept trailing edge and stream-wise side edges. Only a
rectangular control surface will be treated here, however. For a full-span
control surface the results of the previous section could be directly applied.
The general case with a part-span control surface with no span-wise
deformation may be obtained by suitable superposition of solutions having
( 1),( y, 0) W(s)for a., y i and (1),( y, 0) :-= 0 for  a ( y a , in the

transformed plane, where y = a, is the location of an inner side edge. It
is convenient in the present case to set x 0 at the leading edge of the
control surface and the control-surface chord equal to unity.

From Eq. (10) we find that

(1)(0)(y, + 0) 6 4(2) (K ly — ) dx)
2 j

(42)

or, upon inversion by use of Eq. (24)

x
d1 


9)0 )(x,  y, 0) = — 2-7f x e
rx - 


2L e Jw(e) d (43)

0

The feasibility of choosing 71 = co as the upper limit of integration will be
apparent shortly.

For the calculation of TM we will assume that K a — a ,I is so large that

in Eqs. (12) and (13) (D(°) may be replaced by its asymptotic value which
can be found by aid of the formula

f (2)(Ku) du -- f I I (2 ) (Ku) du -2f Hoc')  (Ku) du

ie 1K

of y

[
K

1 +

1







— 2K2K3P2 V-7.TR

Hence for large positive values

(1)(0)

and for large negative values

( DM

2ti3 /2 A/7Tp

2K3/ 2 A/77.71

where p, = Y —(71 I denotes the distance from the point on the v-axis to

v a1. When introducing these into Eqs. (12) and (13) for To) and

T(1) it is seen that the same integrals are obtained as for To) and T(2) in

the previous section (cf. Eqs. (32) and (38). Note, however, that the
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expression for (I)(°) in Eq. (46) differs from that of 'F(1), Eq. (38), in
Section 6, by a factor of Thus the previous results may be applied
directly. When calculating 111.(2) we notice that the dominating term of
WM is the one originating from the first (strip-theory) term in the expres-
sion for (D(°), Eq. (45), so that, T(2) to the first order must be equal to T(2)
of the previous section. Finally 1- ( 2) may be neglected in comparison
with T(2) so that the only solution required in addition to those of Section 6
is that for 9;(0 ), Eq. (43).

A-co

0.4

STABLE UNSTABLE
0.2

2 4 6 A 8
FIG. 8. Curves for zero hinge-moment damping at 114- - 1 on rectangular


control surfaces (hinge at the leading edge).

The theory is applied to the calculation of the hinge-moment-damping
coefficient. This is given by  (1Ik)L..,'  (setting  x =  0 at the hinge and
assuming the aileron to have no aerodynamic balance). A positive
indicates negative damping, i.e. a one-degree-of-freedom flutter of the
aileron is possible. In Fig. 8 is calculated the stability boundary for the
rectangular control surface, i.e. the values of  A  and k for which  L = O.
Two different locations for the control surface are considered, an outer one
with one free side edge, and an inner one for which the control surface is
assumed to be situated sufficiently far inboard so that the effect from the
side edges of the planform on the control-surface pressure distribution
may be neglected. It is seen that stability could always be achieved by a
low enough aspect ratio and, of course, a high enough natural frequency of
the control surface. Also the outer location is more favourable from a
stability point of view than the inner one. The effect of the position of
the control surface is further demonstrated in Fig. 9. The case con-
sidered is a rudder of  A —  4 oscillating at  k n= 0.3. The horizontal tail
surface is assumed to act as an infinite reflecting plane. The two curves
given are the span-wise distribution of (1,/k)L.',., i.e. (1 /1?)/:,  on the rudder
for the two different positions shown in the accompanying sketches. It is
remarkable that moving the rudder upwards a distance of only one chord
length so that the upper side edge becomes a free edge will remove the
strong negative damping over most of the rudder and hence make it stable.
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k• Q3

1

0 2
(/k)q2

PRESENT THEORY
--- STRIP THEORY

1

4Wm611
0  2

(1/k)12"2

STABLE UNSTABLE

FIG. 9. Hinge-moment damping distribution on two  r1  4 rudders at 31-1.


8. SOLUTION FOR DELTA WINGS

The principle of successive cancellation of lift outside the side edges
employed above could possibly also be utilized for other wings with plan-
forms composed of straight edge segments. Actually, by introducing
oblique co-ordinates, it is possible to find the solution corresponding to
Eq. (12) for any swept edge. The principal difficulty remains, however,
to ascertain the convergence of the series corresponding to Eq. (22), in
particular near corners formed by two subsonic edges.

For one particular planform, namely the triangular one, it is possible
to obtain the exact solution in a di fferent manner. In Eq. (2) (with
M = 1) the following transformations are introduced

Z z;x - - 1 (47)

I.9, Xe (1- F/-) A] iNX, Z) (48)

By Eq. (47) the triangular wing is transformed to a pseudo-rectangular
one with the leading edge at X - — cr)and the trailing edge at X 1
(see Fig. 10). The remarkable thing about the transformation Eq. (48) is

270
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(1,-0;0)

(-1,-Œ,O)

Y- y Ix

/x
FIG. 10. Co-ordinate transformation for the delta wing.

that it will make 52 a solution of the transonic equation (2) in the new
co-ordinate system. Thus

nylz  zz —  2 ildtv ----- 0 (49)

Consequently the problem for the delta wing is reformulated to that for a
rectangular wing with the tangency condition

1f Y'
Qz( X, Y, 0) —

X-2
e 21-

Ix r  lx
w(— 11X,— Y/X) (50)

(for — oo X — 1, IY

The transformation thus makes it possible to solve the problem exactly by
use of the rectangular-wing solution. However, for X —› — (-JD,i.e. near
the apex of the delta wing, the series, Eq. (22), given in Section 4 for the
loading on the rectangular wing will not converge in general. The reason is

cr).
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that, as is easily shown from the above equations, the correct loading should
there approach that given by slender-wing theory (providedw is a smooth
function of x near the apex) and this corresponds to Kg 0 in Eq. (16)
for which the series does not converge. The limitation is probably not
serious from a practical point of view, however, since in most flutter cases
one is interested in modes for which the wing apex does not move.

The presented transformation certainly opens up several interesting
possibilities but, so far, no specific applications have been made.

9. CONCLUSIONS

The method presented in Section 4 allows the calculation, according to
linearized theory, of generalized aerodynamic forces on any rigidly or
flexibly oscillating rectangular wing provided the aspect ratio and reduced
frequency are different from zero. Starting with the solution for a wing
of infinite span, the solution was obtained as an infinite series which
apparently converges rapidly even for fairly low values of /61A/k.  Thus
three terms in the series are sufficient in the case of a rigidly oscillating
wing of A = 2 for  k .?;0.2. This covers probably the complete range of
validity of linearized theory. The numerical results confirm the con-
clusion reached in an earlier investigation(") that three-dimensional effects
are always very large, even for fairly large values of A VT?.

From the calculations for a rectangular control surface one may conclude
that the aerodynamic hinge moment damping is strongly affected by the
geometry. Thus a control surface with an aspect ratio less than 3.5 is
always damped regardless of its nattiral frequency. If the control surface
has one outer, free, side edge it will have positive damping forA < 4.5.
However, the use of linearized theory for an oscillating control surface is
questionable for two reasons : (1) The reduced frequencies of interest
(based on control surface chord) are usually low so that the requirement(1)
may not be fulfilled. (2) À shock wave mav be located immediately ahead of
the control surface causing "buzz", a non-linear phenomenon. A
simplified method to treat this phenomenon in two-dimensional flow has
very recently been suggested in Ref. 12.

In Section 8 a transformation was given which enables the exact solution
for a delta wing to be found, provided the solution for a corresponding
rectangular wing is known. However, no numerical applications have so
far been made.
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APPENDIX

CALCULATION OF Ii0 (x, y)

The inversion of kl'(l )(r) defined by Eq. (37), may be written

-
Vi(1)(x, r,  7) = f 170(x — 6,r)ew (e)4 (Al)

where

/lax,
and, according to Eq. (36),

A/271- Ho(s)

=

i — 1

°— ,

[1
F(Kr) — –2+

i]




K

We must choose  k  to have a negative imaginary part, however small.
Then the proper cut in the complex s-plane to make  (ks)1  occurring in
Eq. (.X2) single-valued is a straight line from the origin to infinity in the
first quadrant making the angle —arg  h  with the real s-axis (see figure
below). The inversion integral reads

1
ho(x) — —f eiszfids — k/2)  ds (A4)

A/27T_,

The path of integration should be taken below the branch-point for
(2ks) , i.e. below the real axis. We complete the path of integration as
shown in the figure below.

Im (s)

.0
... 0  .0".1
....

....

de- .... I-- .....--- ...-- I
- 5. - ar k Re (s)

Since no poles are enclosed the integral along this path is zero. Also,
for the branch Im;(2ks )

J
0,  H

(
s  - - h:/2) goes to zero along the semi-
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circle at infinity so the contribution from this part is zero (Jordan's
lemma). Hence

110(x) —
1

f eiszflo(s — kl2)  ds (A5)
A/277-

where L is shown below.
Im (s)

-or k Re (s)

Along L , H 0(s — k /2) may be expanded in the following series, con-
vergent for all values of s, including Is = co

21e3'i:1 — On(210n/2rnsni2-1
H 0(s — k /2) ==   (A6)

2-Th  n! (n 2( rks)=-

Hence we may substitute Eq. (A6) in Eq. (A5) and integrate term by term.
This leads to integrals of the type

f eisxs71/2-1. ds

These can he evaluated by means of the following formula for the definition
of the gamma function

fs• e---s5 ds —
274 — 8r-1

-" 

P ( a )

(A7)

Then, setting 6
written

where

—arg  k) <  arg 8 < arg  k
Tr

ix, and with arg  k <  0, the final result may be

(A8)

7 ,71irin
— — n

e 4 . 2

n
(A9)

and

1
ho

77kI[go(z)

1 —
2

V = (A10)
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